
OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 2
PROCESS MANAGEMENT

CHAPTER 1 – PROCESSES BASIC 
CONCEPT

Prepared By Mr. EBIN PM, AP, IESCE 1

CO – Students will be able to discuss process
basic concepts and process communication
methods.

EDULINE

PROCESS
A process is a program in execution.
A process is a unit of work in a modern time sharing system.
Process has a task and uses many resources such as CPU time,

memory, files etc.
Hardware resources and software resources are needed. These

resources are allocated by the OS. Resources can be allocated in
two manner.
One is, before the execution started. In this case, a problem arises,

because the I/O devices are allocated for a long time up to the
completion of the program execution. So the waiting time of I/O
device is increased

Prepared By Mr.EBIN PM, AP, IESCE 2



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

Secondly, the devices are allocated only when the need is arised.
Here resource utilization is increased and waiting time is reduced.
The allocation and deallocation of resources is performed by the

OS. In normal case, the deallocation is performed only when the
execution of process is completed. The two types of processes are
User executed process
System executed process (Executed by the OS)
Process can be executed in concurrently. In concurrent execution,

two or more processes are active, but at a time only one process is
executed by the CPU.
Concurrency control is needed for concurrent execution

Prepared By Mr.EBIN PM, AP, IESCE 3

EDULINE

A process is represented in memory as follows: 
• Text : The actual code of the process is stored.
• Data: Global variables are stored
• Heap: Which is memory that is dynamically

allocated during process run time.
• Stack: Which contains temporary data

(such as function parameters,
return addresses, and local variables)

Prepared By Mr.EBIN PM, AP, IESCE 4



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

• A program is a passive entity, such as a file containing a list of
instructions stored on disk (often called an executable file).

• A process is an active entity, with a program counter specifying the
next instruction to execute and a set of associated resources.

• A program becomes a process when an executable file is loaded
into memory.

• Different copies of a program can be used by different users. For
example, several users may be running different copies of the mail
program. Similarly, Different copies of the same program can be
used by one user. For example, same user may invoke many copies
of the web browser program. Each of these is a separate process,
and, although the text sections are equivalent, the data sections
vary.

Prepared By Mr.EBIN PM, AP, IESCE 5

EDULINE

PROCESS STATES

Figure: Diagram of process state

Prepared By Mr.EBIN PM, AP, IESCE 6



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

As a process executes, it changes state. Each process may be in
one of the following states:

1. New: The process is being created.
2. Running: Instructions are being executed.
3. Waiting: The process is waiting for some event to occur (such as

an I/O completion or reception of a signal).
4. Ready: The process is waiting to be assigned to a processor.
5. Terminated: The process has finished execution.

• Only one process can be running on any processor at any instant,
although many processes may be ready and waiting.

Prepared By Mr.EBIN PM, AP, IESCE 7

EDULINE

PROCESS CONTROL BLOCK(PCB)
Each process is represented in the operating system by a process

control block (PCB) — also called a task control block. It contains
many pieces of information associated with a specific process

• Process state: The state may be new, ready,
running, waiting, halted, and so on.

• Program counter: The counter indicates the
address of the next instruction to be executed
for this process.

Prepared By Mr.EBIN PM, AP, IESCE 8



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

• CPU registers: The registers vary in number and type, depending
on the computer architecture. They include accumulators, index
registers, stack pointers, and general-purpose registers, plus any
condition-code information. Along with the program counter, this
state information must be saved when an interrupt occurs, to allow
the process to be continued correctly afterward

• CPU-scheduling information: This information includes a process
priority, pointers to scheduling queues, and any other scheduling
parameters.

• Memory-management information: This information may include
the value of the base and limit registers, the page tables, or the
segment tables, depending on the memory system used by the
operating system

Prepared By Mr.EBIN PM, AP, IESCE 9

EDULINE

• Accounting information: This information includes time limits,
account numbers, job or process numbers, and so on.

• I/O status information: list of I/O devices allocated to this process,
a list of open files, and so on.

Prepared By Mr.EBIN PM, AP, IESCE 10



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

PROCESS SCHEDULING
• The objective of multiprogramming is to have some process

running at all times, so as to maximize CPU utilization (reduce the
idle time of CPU).

• The objective of time-sharing is to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

• A uniprocessor system can have only one running process. If 5
more processes exist, the rest must wait until the CPU is free and
can be rescheduled.

• If more process exists in memory, we must select the process.
Here scheduling is done.

Prepared By Mr.EBIN PM, AP, IESCE 11

EDULINE

• As processes enter the system, they are put into a job queue. This
queue consists of all processes in the system.

• The processes that are residing in main memory and are ready and
waiting to execute are kept on a list called the ready queue. This
queue is generally stored as a linked list. A ready-queue header
contains pointers to the first and final PCBs in the list.

• In the case of an I/O request, such a request may be to a shared
device, such as a disk. Since the system has many processes, the
disk may be busy with the I/O request of some other process. The
process therefore may have to wait for the disk. The list of
processes waiting for a particular I/O device is called a device
queue. Each device has its own device queue

Prepared By Mr.EBIN PM, AP, IESCE 12



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

Figure: The ready queue and various I/O device queues.
Prepared By Mr.EBIN PM, AP, IESCE 13

EDULINE

QUEUEING DIAGRAM - Queueing diagram is used to represent
process scheduling. Consider the following figure. Each rectangular
box represents a queue. Two types of queues are present: the
ready queue and a set of device queues. The circles represent the
resources that serve the queues, and the arrows indicate the flow
of processes in the system.

Prepared By Mr.EBIN PM, AP, IESCE 14



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

A new process is initially put in the ready queue. It waits in the
ready queue until it is selected for execution (or dispatched).
Once the process is assigned to the CPU and is executing, one of

several events could occur:
 The process could issue an I/O request, and then be placed in an

I/O queue.
The process could create a new sub process (child process) and

wait for its termination.
The process could be removed forcibly from the CPU, as a result of

an interrupt, and be put back in the ready queue.

Prepared By Mr.EBIN PM, AP, IESCE 15

EDULINE

Diagram showing CPU switches from process to process

Prepared By Mr.EBIN PM, AP, IESCE 16



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

SCHEDULERS
All the jobs that enter in the system are kept in the job pool. The

all processes in the job pool are in a job queue.
The operating system must select, for scheduling purposes,

processes from these queues in some fashion. The selection
process is carried out by the appropriate scheduler.
Different schedulers are:
Long-term scheduler: The long-term scheduler, or job scheduler,

selects processes from job pool and loads them into memory for
execution.

Prepared By Mr.EBIN PM, AP, IESCE 17

EDULINE

Short-term scheduler: The short-term scheduler or CPU scheduler
selects the process from main memory and allocates the CPU for
executing the job.

• There is a difference between these two schedulers is the
frequency of execution. Short term scheduler is more frequent
because, When CPU selects a process, that process must have an
I/O operation. So the CPU must select the next process quickly. So
the frequency of CPU scheduler is high.

• The long-term scheduler, on the other hand, executes much less
frequently. The long-term scheduler controls the degree of
multiprogramming (the number of processes in memory).

Prepared By Mr.EBIN PM, AP, IESCE 18



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

• If the degree of multiprogramming is stable, then the average rate
of process creation must be equal to the average departure rate of
processes leaving the system.

• Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time
to select a process for execution.

• Most processes can be described as either I/O bound or CPU
bound. An I/O bound process spends more of its time doing I/O
than it spends doing computations. A CPU-bound process using
more of its time doing computation than an I/O-bound process
uses.

Prepared By Mr.EBIN PM, AP, IESCE 19

EDULINE

• The long-term scheduler should select a good process mix of I/O-
bound and CPU-bound processes.

• If all processes are I/O bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do.

• If all processes are CPU bound, the I/O waiting queue will almost
always be empty, devices will go unused, and again the system will
be unbalanced.

• The system with the best performance will have a combination of
CPU-bound and I/O-bound processes

Prepared By Mr.EBIN PM, AP, IESCE 20



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

Medium-term scheduler
• On some systems, the long-term scheduler may be absent or

minimal. For example, time-sharing systems such as UNIX often
have no long-term scheduler.

• It introduces an additional scheduler called Medium-term
scheduler, removes processes from memory (due to some
performance reason) and thus reduces the degree of
multiprogramming.

• Later on this process may be put in to the memory again and its
execution can be again started from where it was left off. This
process of moving a process in and out of the memory is called
swapping

Prepared By Mr.EBIN PM, AP, IESCE 21

EDULINE

• Sometimes swapping becomes essential to deal with the situation
when a running process requests more RAM. It can be given by
moving (swapping) a ready process to the disk and making RAM
available to the requesting process.

• The main function of medium term scheduler is to perform swap-in
and swap-out of processes. Swapping is necessary to improve the
process mix. All versions of windows OS uses swapping.

Prepared By Mr.EBIN PM, AP, IESCE 22



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

CONTEXT SWITCH
 Switching the CPU to another process requires saving the state of the

old process and loading the saved state for the new process. This task is
known as a context switch.
When a context switch occurs, the kernel saves the context of the old

process in its PCB and loads the saved context of the new process
scheduled to run.
Context-switch time is pure overhead, because the system does no

useful work while switching.
 Its speed varies from machine to machine, depending on the memory

speed, the number of registers that must be copied, and the existence
of special instructions (such as a single instruction to load or store all
registers).
Context- switch times are highly dependent on hardware support.

Prepared By Mr.EBIN PM, AP, IESCE 23

EDULINE

PROCESS CREATION
• A process may create several new processes, via a create-process

system call, during the course of execution.
• The creating process is called a parent process, whereas the new

processes are called the children of that process. Each of these new
processes may in turn create other processes, forming a tree of
processes

• A process will need certain resources (such as CPU time, memory,
files, I/O devices) to accomplish its task. For identifying each
process, process identifiers are used. For example, the same
named processes are identified by the OS using process-id which is
typically an integer number.

Prepared By Mr.EBIN PM, AP, IESCE 24



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

A process may create several subprocesses. When a process
creates a subprocess, that subprocess may be able to obtain its
resources. The resources are allocated in two ways
The resources can be obtained directly from OS
Parent process gives the resources.
The parent process gives its resources in two ways.
Parent divide its resources and give one part to the child
The parent and the child share the available resources.
The execution of the processes is done in two ways
The parent continues to execute concurrently with its children.
The parent waits until some or all of its children have terminated.

Prepared By Mr.EBIN PM, AP, IESCE 25

EDULINE

Figure: Process creation using the fork() system call
• In UNIX, each process is identified by its process identifier, which is

a unique integer. A new process is created by the fork system call.
The new process consists of a copy of the address space of the
original process. This mechanism allows the parent process to
communicate easily with its child process

Prepared By Mr.EBIN PM, AP, IESCE 26



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

• When the parent is waiting, the child process must be loaded in to
the main memory. At that time, the images that already exist in the
memory must be deleted. For that purpose, the exec() system call
is used.

• The child process has its own address space. This address space
a) May be the duplicate of the parent process or
b) The separate address space of the child process.

• The parent waits for the child process to complete with the wait
system call. When the child process completes, the parent process
resumes from the call to wait where it completes using the exit
system call.

Prepared By Mr.EBIN PM, AP, IESCE 27

EDULINE

PROCESS TERMINATION
• A process terminates when it finishes executing its final statement

and asks the operating system to delete it by using the exit system
call. At that point, the process may return data (output) to its
parent process (via the wait system call). All the resources of the
process — including physical and virtual memory, open files, and
I/O buffers — are deallocated by the operating system

• Termination occurs under additional circumstances. A parent
process can terminate the execution of a child process using
abort() system call. A parent may terminate the execution of one
of its children for a variety of reasons, such as these:

Prepared By Mr.EBIN PM, AP, IESCE 28



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

a)The child has exceeded its usage of some of the resources that it
has been allocated. This requires the parent to have a mechanism to
inspect the state of its children.
b) The task assigned to the child is no longer required. The parent
process may create additional children for helping the parent. After
some times, if the parent can succeed without the help of the child
process, then the parent aborts the process.
c) The parent is exiting, and the operating system does not allow a
child to continue if its parent terminates. On such systems, if a
process terminates (either normally or abnormally), then all its
children must also be terminated. This phenomenon, referred to as
cascading termination.

Prepared By Mr.EBIN PM, AP, IESCE 29

EDULINE

INTERPROCESS COMMUNICATION(IPC)
• Processes executing concurrently in the operating system may be

either independent processes or cooperating processes.
• A process is independent if it cannot affect or be affected by the

other processes executing in the system. Any process that does not
share data with any other process is independent.

• A process is cooperating if it can affect or be affected by the other
processes executing in the system. Clearly, any process that shares
data with other processes is a cooperating process.

• Cooperating processes require an interprocess communication
(IPC) mechanism that will allow them to exchange data and
information.

Prepared By Mr.EBIN PM, AP, IESCE 30



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 16

EDULINE

• There are two fundamental models of interprocess
communication: shared memory and message passing.

Figure: Communications models. (a) Message passing. (b) Shared memory
Prepared By Mr.EBIN PM, AP, IESCE 31

EDULINE

• In the shared-memory model, a region of memory that is shared by
cooperating processes . Processes can then exchange information
by reading and writing data to the shared region.

• In the message-passing model, communication takes place by
means of messages exchanged between the cooperating processes.

• Message passing is useful for exchanging smaller amounts of data.
Message passing is easier to implement in a distributed system.

• Shared memory can be faster than message passing, since
message-passing systems are typically implemented using system
calls and thus require the more time-consuming task of kernel
intervention.

Prepared By Mr.EBIN PM, AP, IESCE 32



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 17

EDULINE

• In shared-memory systems, system calls are required only to
establish shared memory regions. Once shared memory is
established, all accesses are treated as routine memory accesses,
and no assistance from the kernel is required.
Shared-Memory Systems
• Interprocess communication using shared memory requires

communicating processes to establish a region of shared memory.
• Typically, a shared-memory region resides in the address space of

the process creating the shared-memory segment. Other processes
that wish to communicate using this shared-memory segment
must attach it to their address space.

Prepared By Mr.EBIN PM, AP, IESCE 33

EDULINE

• To illustrate the concept of cooperating processes, let’s consider
the producer–consumer problem, which is a common paradigm for
cooperating processes.

• A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly
code that is consumed by an assembler.

• To allow producer and consumer processes to run concurrently, we
must have available a buffer of items that can be filled by the
producer and emptied by the consumer.

• This buffer will reside in a region of memory that is shared by the
producer and consumer processes.

Prepared By Mr.EBIN PM, AP, IESCE 34



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 18

EDULINE

• The producer and consumer must be synchronized, so that the
consumer does not try to consume an item that has not yet been
produced.

• Two types of buffers can be used. The unbounded buffer places no
practical limit on the size of the buffer.

• The bounded buffer assumes a fixed buffer size
• The shared buffer is implemented as a circular array with two

logical pointers: in and out. The variable in points to the next free
position in the buffer; out points to the first full position in the
buffer.

• The buffer is empty when in==out;
• The buffer is full when ((in + 1) % BUFFER SIZE) == out.

Prepared By Mr.EBIN PM, AP, IESCE 35

EDULINE

CC

Prepared By Mr.EBIN PM, AP, IESCE 36



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 19

EDULINE

Message-Passing Systems
• Message passing provides a mechanism to allow processes to

communicate and to synchronize their actions without sharing the
same address space.

• For example, an Internet chat program could be designed so that
chat participants communicate with one another by exchanging
messages.

• A message-passing facility provides at least two operations:
send(message) receive(message)

• Messages sent by a process can be either fixed or variable in size.

Prepared By Mr.EBIN PM, AP, IESCE 37

EDULINE

• There are several methods for logically implementing a link
Direct or indirect communication
Synchronous or asynchronous communication
Automatic or explicit buffering
Naming
Processes that want to communicate must have a way to refer to
each other. They can use either direct or indirect communication.
Under direct communication, each process that wants to
communicate must explicitly name the recipient or sender of the
communication. In this scheme, the send() and receive() primitives
are defined as:

Prepared By Mr.EBIN PM, AP, IESCE 38



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 20

EDULINE

send(P, message)—Send a message to process P.
 receive(Q, message)—Receive a message from process Q.
A communication link in this scheme has the following properties:
• A link is established automatically between every pair of processes

that want to communicate. The processes need to know only each
other’s identity to communicate.

• A link is associated with exactly two processes.
• Between each pair of processes, there exists exactly one link.
• This scheme exhibits symmetry in addressing.
• A variant of this scheme employs asymmetry in addressing.

Prepared By Mr.EBIN PM, AP, IESCE 39

EDULINE

send(P, message)—Send a message to process P.
receive(id, message)—Receive a message from any process.

• The variable id is set to the name of the process with which
communication has taken place.

• With indirect communication, the messages are sent to and
received from mailboxes.

• A process can communicate with another process via a number of
different mailboxes, but two processes can communicate only if
they have a shared mailbox. The send() and receive() primitives are
defined as follows:
send(A, message)—Send a message to mailbox A.
receive(A, message)—Receive a message from mailbox A.

Prepared By Mr.EBIN PM, AP, IESCE 40



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 21

EDULINE

Synchronization
• Message passing may be either blocking or non-blocking also

known as synchronous and asynchronous.
Blocking send: The sending process is blocked until the message is

received by the receiving process or by the mailbox.
Non-blocking send: The sending process sends the message and

resumes operation.
Blocking receive: The receiver blocks until a message is available.
Non-blocking receive: The receiver retrieves either a valid message

or a null.

Prepared By Mr.EBIN PM, AP, IESCE 41

EDULINE

Buffering
• Whether communication is direct or indirect, messages exchanged

by communicating processes reside in a temporary queue.
Basically, such queues can be implemented in three ways:
Zero capacity: The queue has a maximum length of zero; thus, the

link cannot have any messages waiting in it. In this case, the sender
must block until the recipient receives the message.
Bounded capacity: The queue has finite length n; thus, at most n

messages can reside in it. The link’s capacity is finite, however. If
the link is full, the sender must block until space is available in the
queue.
Unbounded capacity: The queue’s length is potentially infinite;

thus, any number of messages can wait in it. The sender never
blocks.

Prepared By Mr.EBIN PM, AP, IESCE 42



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 22

EDULINE

PIPES
• A pipe allowing two processes to communicate. Pipes were one of

the first IPC mechanisms in early UNIX systems. They typically
provide one of the simpler ways for processes to communicate
with one another. In implementing a pipe, four issues must be
considered:

1. Does the pipe allow bidirectional communication, or is
communication unidirectional?
2. If two-way communication is allowed, is it half duplex (data can
travel only one way at a time) or full duplex (data can travel in both
directions at the same time)?
3. Must a relationship (such as parent–child) exist between the
communicating processes?

Prepared By Mr.EBIN PM, AP, IESCE 43

EDULINE

4. Can the pipes communicate over a network, or must the
communicating processes reside on the same machine?
Ordinary Pipes
• Ordinary pipes allow two processes to communicate in standard

producer–consumer fashion
• The producer writes to one end of the pipe (the write-end)and the

consumer reads from the other end (the read-end).
• Ordinary pipes are unidirectional, allowing only one-way

communication. If two-way communication is required, two pipes
must be used, with each pipe sending data in a different direction.

• On UNIX systems, ordinary pipes are constructed using the function
pipe(int fd[])

Prepared By Mr.EBIN PM, AP, IESCE 44



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 23

EDULINE

• UNIX treats a pipe as a special type of file. Thus, pipes can be
accessed using ordinary read() and write() system calls.

• A parent process creates a pipe and uses it to communicate with a
child process that it creates via fork().

• Ordinary pipes on Windows systems are termed anonymous pipes.
• Ordinary pipes require a parent–child relationship between the

communicating processes on both UNIX and Windows systems.
• These pipes can be used only for communication between

processes on the same machine.

Prepared By Mr.EBIN PM, AP, IESCE 45

EDULINE

Named Pipes
• Named pipes provide a much more powerful communication tool.
• Communication can be bidirectional, and no parent–child

relationship is required.
• Once a named pipe is established, several processes can use it for

communication.
• A named pipe has several writers.
• Named pipes continue to exist after communicating processes

have finished.
• Both UNIX and Windows systems support named pipes.

Prepared By Mr.EBIN PM, AP, IESCE 46



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 24

EDULINE

• Named pipes on Windows systems provide Full-duplex
communication is allowed, and the communicating processes may
reside on either the same or different machines.

• Named pipes are created with the CreateNamedPipe() function,
and a client can connect to a named pipe using
ConnectNamedPipe().

• Communication over the named pipe can be accomplished using
the ReadFile() and WriteFile() functions.

Prepared By Mr.EBIN PM, AP, IESCE 47

EDULINE

THREADS
• A thread, sometimes called a lightweight process (LWP), is a basic

unit of CPU utilization; it comprises a thread ID, a program counter,
a register set, and a stack.

• If the process has multiple threads of control, it can do more than
one task at a time.

• Many software packages that run on modern desktop PCs are
multithreaded.

• A word processor may have a thread for displaying graphics,
another thread for reading keystrokes from the user, and a third
thread for performing spelling and grammar checking in the
background.

Prepared By Mr.EBIN PM, AP, IESCE 48



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 25

EDULINE

Figure: Single-threaded and multithreaded processes.
Prepared By Mr.EBIN PM, AP, IESCE 49

EDULINE

• Processes are heavy weight task that require their own separate
address space. Threads on the other hand are light weight.

• Thread share the same address space.
• Thread shares the resources. So the thread creation is simple.
Benefits
Responsiveness: Multithreading an interactive application may

allow a program to continue running even if part of it is blocked or
is performing a lengthy operation, thereby increasing
responsiveness to the user.
Resource sharing: threads share the memory and resources of the

process.

Prepared By Mr.EBIN PM, AP, IESCE 50



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 26

EDULINE

Economy: Allocating memory and resources for process creation is
costly. Because threads share the resources of the process to which
they belong, it is more economical to create and context-switch
threads.
Scalability: The benefits of multithreading can be even greater in a

multiprocessor architecture, where threads may be running in
parallel on different processing cores.
User Level Threads
• Here threads are implemented in user level libraries
• These are fast to create and manage because no kernel

intervention

Prepared By Mr.EBIN PM, AP, IESCE 51

EDULINE

• Here kernel is not aware of the existence of thread. It pick a
process and give control. The thread scheduler inside the process
decides which thread to run.

• Since there are no clock interrupts to multiprogrammed threads,
the thread may continue running as long as it wants to. If it uses up
the process’s entire time quantum , the kernel will select another
process to run.

• The scheduling algorithm used by the runtime system can be
Round-Robin scheduling and priority scheduling.

• Drawback - If kernel is a single threaded, then any user level thread
performing a blocking system call will cause the entire process to
block.

Prepared By Mr.EBIN PM, AP, IESCE 52



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 27

EDULINE

• Run-time system do the operations related to the thread. It
contains a collection of Procedures for thread manipulation.

• Thread table is used for keeping the information about thread PC
value, stack information's etc.

Prepared By Mr.EBIN PM, AP, IESCE 53

EDULINE

Kernel Level Threads
• Kernel does thread management
• Kernel performs thread creation, scheduling and management in

kernel space.
• The OS is aware of the presence of threads in the processes,

therefore even if one thread of a process gets blocked, the OS
chooses the next one to run, either from the same process or from
the different one.

• Kernel threads are generally slower to create and manage.
• The OS will handle blocking system call in kernel level.
• Kernel level thread is efficient in multiprocessing environment.

Prepared By Mr.EBIN PM, AP, IESCE 54



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 28

EDULINE

k

Prepared By Mr.EBIN PM, AP, IESCE 55


